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INFLUENCE OF THE IN-PLANE BOUNDARY CONDITIONS
ON THE NATURAL FREQUENCY OF CYLINDRICALLY
CURVED PANELS WITH SIMPLY SUPPORTED EDGES

YUJI MATSUZAKIt

National Aerospace Laboratory, Tokyo, Japan

Abstract-The natural frequency ofroof-shaped panels is evaluated on the basis ofReissner's simplified equations
for thin shallow shells, which are approximately solved with the aid of Galerkin's method. The flexural vibration
mode is assumed in a form of Fourier series and a homogeneous solution of stress function is expressed in terms
of trigonometric and hyperbolic functions in order to satisfy several sets of the in-plane boundary conditions
exactly. The modal equations are generally coupled and hence every natural mode is a general combination of the
assumed modes. Numerical results in two-mode approximation indicate that the conditions at straight edges are
more influential than the conditions at curved edges for a panel of 4 ~ 1, where 4 is defined as the ratio of the
length of straight edges to that of curved edges. In particular, the restriction on the normal displacement at straight
edges raises the natural frequency of the lower frequency mode to a great extent. For 4 :5 1 the conditions at
curved edges are very influential. At curved edges the condition of zero tangential displacement gives more
restrictions to a panel of 4 < 1·83 rather than that of zero normal displacement. As for the higher frequency mode
the influence of the in-plane boundary conditions is diminished.

NOTATION
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a half of length of a panel along straight edges
a half of breadth of projection of a panel on x-y plane (see Fig. 1)
Eh 3/12(1 - v2

)

Young's modulus
stress function
thickness of panel
stress resultants
see equation (23)
see equations (24)
radius of curvature
displacements in x, y and z directions, respectively
modal amplitude
see equation (21)
coordinates
geometry of panel
see equations (12)
see equations (19)
aspect ratio alb
Poisson's ratio
density of panel
iJ2jiJx2 +iJ2liJy2

natural frequency
dimensionless natural frequency, see equation (22)
a natural mode predominated by p and q half-waves in x and y directions, respectively
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I. INTRODUCTION

THE analysis of flexural vibration of curved panels is essential to aeroelastic and acoustIC
problems of high-speed aircrafts and rockets in which curved panels are fundamental
structural components.

For curved panels with simply supported edges early works based on a modal approach
were performed by Vlasov [1], Palmer [2] and Reissner [3]. Palmer gave the frequency
formula of clamped edge panels, too. Reissner derived the simplified equations from the
shallow shell theory of Marguerre [4J by omitting the effect of in-plane inertia on a basis of
an order-of-magnitude analysis. Kobayashi [5J gave the natural frequency of simply
supported edge panels constrained by the condition that zero normal displacement at the
edges was satisfied on an average and showed the occurrence of coupling of the assumed
modes. Sewall [6J presented the frequency equations ofcurved panels with simply supported
or clamped edges by employing the beam vibration mode and compared theoretical results
with available experimental data. Webster [7J calculated the natural frequency for clamped
panels approximating the vibration mode by truncated double-power series and evaluated
a range of panel geometry for which Sewall's equations gave accurate results. For two­
dimensional curved panels Dowell [8J indicated the coupling behavior of the assumed
modes in a symmetrical form.

It can be concluded from the results of the above-mentioned investigations that
natural frequency ofcurved panels is greatly affected by both curvature and edge condition".
As for the analysis of vibration of cylindrical shells, Forsberg [9] solved numerically the
eighth-order characteristic equation and indicated that the in-plane boundary conditions
have a great influence on the natural frequency.

In the present paper the effect of the in-plane boundary conditions on the natura!
frequency of curved panels with simply supported edges is investigated as well as the effect
of panel geometry. Forsberg's method may be applicable to an analysis of curved panels.
However, the present investigation is a preliminary one for panel flutter problem of curved
panels. It is too laborious to apply the method to the flutter problem.

Recently, the buckling analysis of a fundamental mode of curved panels including the
effect of the in-plane boundary conditions on critical loads is presented by Hayashi and
Kondo [tOJ using a modal approach. They have expressed a homogeneous solution of
stress function in terms of trigonometric and hyperbolic functions to satisfy the in-plane
boundary conditions exactly. Such an approach is taken here by employing Reissner"s
simplified equations for thin shallow shells.

2. ANALYSIS

The strain--displacement relations of the middle-surface of a thin shallow curved panel
are given as
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where Z = Z(x, y) is the geometry of the middle-surface of the panel and Hooke's law as

8yO= (Ny-vNx)/Eh

YXyO = 2(1 + v)NxyjEh.

Figure 1 shows the panel geometry defined as

b2 _ y2

Z=-m
and coordinate system.

Z(x,y) x

R

FIG. 1. Rectangular cartesian coordinates and shell geometry.

(2)

(3)

Reissner's equations of equilibrium and compatibility in the linear theory are given as
follows:

(4)

(5)

where D, E and F are bending stiffness, Young's modulus and stress function defined as

o2F N
-=-y

ox2 h'
(6)

The simply supported edge conditions are taken:

W = o2wjox2 = 0 at x = -a and a

w = o2wjoy2 = 0 aty = -b and b.

(7.1)

(7.2)
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(8.1 )

The following sets of the in-plane boundary conditions which are the same at the opposite
sides of edges are considered:

( Sx1: u = v = 0

1
or Sx2 : N x = v = 0

or Sx3 : u = N xv = 0

or Sx4: N x = N xl' = 0 at x = -a and x = a,

Syl: v = u = ()

or Sy2: Ny = U = ()

or Sy3 : v = N xl' = 0
(8.2)

orSy4:Nl' =Nxl' ={) aty= -bandy=b.

In a subsequent section, description ofderivation ofthe modal equations will be divided into
four parts corresponding to the vibration mode.

2.1 Odd numbers ofhalf-waves in x and y directions

The flexural vibration mode is assumed so as to satisfy equations (7.1) and (7.2) as
follows:

oc ~ . mn nn
W= L L wmn(t)COS-2-xCOS2bY'

m~ln~l a
m,n: odd

(9.1 )

Substitution ofequations (9.1) and (3) into equation (5) yields a solution of stress function as

F = Fp+Fh

where Fp and Fh are particular and homogeneous solutions, respectively and

EWmn (2a) 2 m
2

mn nn
Fp = - ~ ~~ -:;; (m2 +n2X2)2 cos 2a x cos 2b Y

F
h

= ~["L cos mn x( IY.mcosh mn y + 13m m
2

n y sinh m
2

n y)
R m 2a 2a a a

+ ~ cos ;;y( Yn cosh ;;x+bn;;xsinh ;;x)1
Equations (10.1) and (6) yield stress resultants as

(l0.1 )

(11.1 )

(12.1 )

N E[ m2n2A2 mn nn
~ = - "L L W mn 2 2 ' 2 2 cos -2x cos 2b Y
h R m n (m +n It ) a

+~ (~:) 2 cos ~: x {(lY.m+213m) cosh ~: y + 13m~: y sinh~: y}

-~ (;;r cos ;;y(Yn cosh ;~X+bn~EXsinh ;~x) ] (13.1)



Influence of the in-plane boundary conditions

Ny E[ m4 mn nn
-h = - LLwmn Z zA,zfcos-2 xcos 2byR m n (m +n a

(
mn) 2 mn ( mn mn. mn)- L - COS-X IXmcosh-y+Pm-ysmh-y

m 2a 2a 2a 2a 2a

(
nn) 2 nn { nn nn. nn}]

+ ~ 2b cos 2bY (Yn + 2bn) cosh 2b x + bn2b x smh 2b x

N xy E [" " A,m
3
n. mn . nn

T=R ';-~Wmn(m2+n2A,2)2sm~xsm2bY

(
mn) 2 . mn { . mn mn mn }

+ ~ 2a sm 2a X (IXm+Pm)smh 2ay+Pm2aycosh 2a Y

(
nn) 2 . nn { . nn nn nn }]

+ ~ 2b sm 2b
y (Yn+bn)smh2bx+bn2bxcosh2bX .

The displacements u and v are derived from equations (1), (2) and (l0.1) as

mn nn
+ LLWmnYCoS-2 xcos-by

m n a 2
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(15.1)

(16.1)

(17.1)
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Since, for this vibration mode, the displacements are symmetric with respect to the
x = 0 and y = 0 sections, the conditions u = 0 and v = 0 are satisfied at x = 0 and y
respectively. By means of equations (13.1 HI7.!) each in-plane boundary condition leads
to the equations with respect to the unknown quantities Xm • 11m • I'n and (in (III I. 3 'I

andn = I.3,5.... )as
x = -a and a;

u = 0:

v = 0: Xmand Pm are arbitrary.

nn . { nn. nn nn .}
YnO + v) cosh 2 A+ bn (I + v) 2 Asmh 2 ), + 2 cosh 2)c = 0

equation (OOX-3)

nn nn. nn.
'" cosh -) + b -) smh --Ie = 0
In 2' n 2' 2

(OOX-J)

(00X-21

(00X-3)

(00X-4)

(00X-5)

N
xy

= 0: equation (OOX-I)

nn ( nn nn . nn ') Jj (2a) 2 r
3

. rnYnsinh-2 J.+bn sinh-
2

A+-
2

Ie cosh ) Ie = - L -- . 2 2P)2Wrnsm-)-(00X-6)
- r= 1 n An(r +n , -

r: odd

y = -b and b;

v = 0:

u = 0:

'In = bn = 0

mn J mn mn . mn1
xm(1 + v) sinh 2J. + Pm 1(1 + v) 2). cosh 2), - (1 - v) smh 2A J

en (2a)2},s{s2),2+(2+V)m 2( . sn'\ _ . ) wmssm-
S~l n m(m2+S2J.2)2 2

s: odd

Yn and bnare arbitrary.

mn i mn mn mn}xm(l+v)cosh-+Pm (1+v)-, sinh 2)·+2cosh-2 , = 0
2)c 21e' Ie

equation (00Y-3)

(OOY-I)

(00Y-2)

(00Y-3)

(00Y-4)

(00Y-5)
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A = a/b.
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(18)

Corresponding to the combination of the sets of the in-plane boundary conditions,
unknown quantities oc.ms, Pms, Yns and bns are easily determined from equations (OOX-1)­
(OOX-6) and equations (OOY-1HOOY-6) in the general form as

(19.1 )

where oc.is, Pis, Y:s and b:s are constants.
The following seven combinations of sets of the in-plane boundary conditions can be

derived from equations (OOX-1HOOX-6) and equations (OOY-1HOOY-6):

Sx1: Sy2

Sx2: Sy1, Sy2, Sy3, Sy4

Sx3: Sy2

Sx4: Sy2.

It is noted that oc.is and Pis (or Y:s and b:s) in equations (19.1) vanish for the case of the
set Syl (or Sx2).

Finally, equations (9.1), (10.1) and (3) are substituted into the left-hand side of equation
(4) and the Galerkin method is used to obtain a coupled set of modal equations:

where

(m = 1,3,5,... n = 1,3,5, ...) (20.1)

(21)

(22)

(23)

(24.1)
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A characteristic equation is derived as

(251

where A represents a determinant of the coefficients with respect to the modal amplitudes
in equations (20.1). The dimensionless natural frequency n is easily obtained from equation
(25). Since the assumed modes are generally coupled in the modal equations. each natural
mode is a general combination of the assumed modes.

2.2 Odd and even numbers ofha(f-waves in x and y directions, respectively
The vibration mode is assumed to be in the form of

F

~,x mn nn
W = I I wmn(t)Cos-

2
xsin-b,y·

m= 1 n=2 a 2
m: odd. rr: even

The stress function is obtained from equations (9.2) and (5) as

E[ (2a) 2 m
2

mrr, nn
Ii. - ~~ Wmn ~ {m 2 +-11 2J12)2 cos 2a x SIn 2bY

mn ( . mn mn mn l+ LCOS-X amsmh-~y+fJm~·-ycosh-y
m 2a 2a 2a 2a

(9.2)

(10.2)~ . nn ( h nn .. nn . h nn )]+ L,Sm-.y y cos -_·X+O -xsm -x .
/I 2b n 2b tI 2b 2b

Since the in-plane condition Ny = 0 is identically satisfied by means of equation (10.2) at
y = 0, the condition v = 0 is not satisfied at x = -a and a. Hence, the set Syl or Sy3 is
not considered for this vibration mode.

According to the in-plane boundary conditions, the equations with respect to rXm' 13m·

Yn and bn (m = 1,3,5, ... and n = 2,4,6, ...) are obtained as
x = -a and a;

u = 0: (OEX-l)

v = 0:

~. (2a) 2
r()'.hl_~__vr2Lw sin rn

r~l rr J.n(r2 + n 2A2f rn

r;odd

(Xm and /3 .... are arbitrary.

tin { nn., n1r 1 nn }
fll(l+v)coshTA+b/l (1+v)TAsmh'TA.+2coshTl = 0

equation (OEX-3)

nn. ,nn.. h n1r • 0
~) cosh -), + 0 _.- A 8m -A =
III 2' n 2' 2

(OEX-2)

(OEX-3)

(OEX-S)



y = -b and b;

u = 0:
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equation (OEX-l)

nn ( nn nn nn )
I'n sinh 2 A+c:5n sinh 2 A+2Acosh 2 A

00 (2a) 2 r3
. rn

,,- 2 2 2 2 Wrn sm -
r~l n An(r +n A. ) 2

r: dd

Yn and I n are arbitrary.

. mn { mn mn . mn}
am(1 + v) 8mh 2..1. + Pm (1 + v) 2A. cosh "IT+ 2 smh 2A = 0

equation (OEY-3)

mn mn mn
am sinh 2A. + Pm 2A cosh 2I = 0

Yn = c:5n = 0

s: even
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(OEX-6)

(OEY-3)

(OEY-4)

(OEY-5)

(OEY-l)

The following combinations of sets of the in-plane boundary conditions may be chosen:

Sx1: Sy2

Sx2: Sy2, Sy4

Sx3: Sy2

Sx4: Sy2.

The coupled set of the modal equations is obtained as

where

(m = 1,3,5,... n = 2,4,6, ...) (20.2)

J",,(m, n) =

(24.2)
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The dimensionless natural frequency is obtained from the characteristic equation associated
with equation (20.2).

Descriptions about the remaining vibration modes will be omitted in the present paper

3. NUMERICAL RESULTS AND DISCUSSIONS

In the present analysis the influence of the in-plane boundary conditions aI x .. (1

and a (or at y = -h and h) on the natural frequency can be investigated exclusively with
the combination of the set S},2 at the adjoining edges y = hand h (or the set Sx2 at
x = -·a and a). The analysis in the preceding section indicates that each natural mode is
generally a combination of the assumed modes. However, as for the case of the set Sy2
the wmss are uncoupled in equations (20) since the a:s and the fJ:s in equations (19) vanish.
It is also true that the Wrns are uncoupled in equations (20) for the case of the set Sx2.
Therefore, for the case of the combination of the sets Sx2 and Sy2 the assumed modes are
uncoupled and each assumed mode represents a natural mode. The numerical calculations
are presented for symmetrical vibration modes and carried out by employing two-mode
approximation (m 1 and 3 for n = 1 or n = 1 and 3 for m 1) in the right-hand side
of equation (9.1).

Figures 2(a), 3(a) and 4(a) illustrate the influence of the in-plane boundary conditions
at x = -a and a with the combination of the set Sy2 at y = -b and b. The dimensionless
natural frequency Q for panels of aspect ratio ;, 0·5, 1·0 and 2·0 are plotted against the
geometric parameter 4a2/Rh. In the figures the natural frequency of a panel constrained

n

10 / I

(3.1) (1,1) I/ i
S,3,S,4

I/5
1,

~J0
0 20 40 60 80 100 120

40
2

Rh
FIG. 2(a). Natural frequencies for A. = 0·5 with the set Sy2 of the boundary conditions at y = - band b.
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FIG. 2(b). Natural frequencies for A. = 0·5 with the set Sx2 of the boundary conditions at x = -a and Q.
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FIG. 3(a). Natural frequencies for Ie = 1·0 with the set S;J. of the boundary conditions at y = - band b.
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FIG. 3(b). Natural frequencies for A = 1·0 with the set Sx2 of the boundary conditions at x = - <l and <l.
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FIG. 4(a). Natural frequencies for A = 2.0 with the set Sy2 of the boundary conditions at y = - band h.
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FIG. 4(b). Natural frequencies for A = 2·0 with the set Sx2 of the boundary conditions at x = - a and a.

by the sets of Sx1, Sx2, Sx3 and Sx4 at x = -a and a is presented by chain, solid, faint and
dashed lines, respectively. When two lines can not be drawn separately, the one for the
higher frequency is presented with an indication of both sets. The notation (p, q) indicates
a natural mode predominated by an assumed mode of p and q half-waves in x and y
directions, respectively.

It may be concluded from Figs. 2(a), 3(a) and 4(a) that the in-plane boundary conditions
are quite influential to the natural frequency of the lower frequency mode, namely a (1, 1)
mode. In particular, the condition of zero tangential displacement v gives much restriction
to a panel of aspect ratio A. :$ 1 compared with the condition of zero normal displacement
u since the natural frequency for the case of the set Sx1 or Sx2 is much higher than for the
case of the set Sx3 or S,4. Figure 4(a) indicates that for a higher value of aspect ratio the
effect of the boundary conditions at x = -a and a is diminished. The reason is that the
distance between the edges at x = - a and a relatively increases compared with the distance
between the adjoining edges y = - band b as the aspect ratio increases.

It is noted that for a higher value of aspect ratio the condition of zero normal displace­
ment u is more restrictive rather than that of zero tangential displacement v. The higher
frequency mode, namely a (3, 1) mode, is not so sensitive to the effect of the in-plane boundary
conditions at x = -a and a. The panel curvature has a large effect on the natural frequency
of the lower and higher frequency modes.

Figures 2(b), 3(b) and 4(b) illustrate the influence of the in-plane boundary conditions
at y = - band b with the combination of the set Sx2 at x = - a and a. In the figures the
natural frequency of a panel constrained by the set Syl, Sy2, Sy3 or Sy4 at y = - band b
is indicated by a chain, a solid, a faint or a dashed line, respectively. Figures 2(b) and 3(b)
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present typical illustrations that, except for the case of Sy2, each natural mode is a combma·
tion of w 11 and w13' with the lower frequency mode being predominately \\' I i for small
4a 2/Rh and W l3 for large 4a 2/Rh. Conversely, the higher frequency mode is predominately
W I3 for sma1l4a 2/Rh and W il for large 4a 2/Rh.

It may be concluded from Figs. 2(b), 3(b) and 4(b) that the in-plane boundary conditlOm
at y = - hand h have a great influence on the natural frequency of the lower frequency
mode. Especially the condition of zero normal displacement v is very restrictive to a panel
since the natural frequency of a panel restrained by the set Syl or Sy3 is much higher than
by the set Sv2 or Sv4. However, the influence decreases as the aspect ratio decreases. The
boundary condition is less influential to the natural frequency of the higher frequency mode.

The summary of the numerical results is as follows: for a panel of aspect ratio /.2: ]
the conditions at the straight edges, y '=0- hand h, are more influential than the conditions
at the curved edges, x = a and a. In particular, the restriction on the normal displacemem
l' at the straight edges raises the natural frequency of the lower frequency mode to a great
extent. For a panel ofaspect ratio I. ::s I the conditions at the curved edges are vcry influen­
tial. At the curved edges the condition of zero tangential displacement v gives more restric
tions to a panel of aspect ratio i, < 1·83 rather than that of zero normal displacement Ii

As for the higher frequency mode the influence of the in-plane boundary condition h

diminished.
Although in the present analysis the influence of the in-plane boundary conditions can

be investigated solely with the combination of the set S,2 or Sy2 at the adjoining edges,
the combination of the different set from S,2 or Sy2 might be expected to have a qualitatively
similar influence on the natural frequency. The present approach based on Reissner's
simplified equations for thin shallow shells has limitations on a range of panel curvature
and on a choice for combination of sets of the in-plane boundary conditions. However, it
provides a useful tool for estimation on the natural frequency of shallow curved panels
including the effect of the in-plane boundary conditions,

In the Appendix is presented the derivation of the modal equations and the associated
in-plane boundary conditions of shallow curved shells defined in the shell coordinate
system shown in Fig. 5. It is also indicated that the natural frequency of thin cylindrical
shells based on the Donnell type approximation is easily evaluated by utilizing the present
analysis with appropriate modifications. Forsberg [11] has presented a range of shell
geometry, for which the Donnell type approximation and omission of the in-plane inertia
give accurate results.

Z( x,y) x

FIG. 5. Shell coordinates and shell geometry.
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The present approach, in which a homogeneous solution of stress function is expressed
in terms of trigonometric and hyperbolic functions in order to satisfy several combinations
of the in-plane boundary conditions exactly, is also applicable to a nonlinear analysis of
flexural vibration of rectangular plates [12].

The application of the present approach to panel flutter analysis of curved panels will
be presented elsewhere.

4. CONCLUSIONS

The natural frequency of curved panels is evaluated on a basis of Reissner's simplified
equations, which are approximately solved with the aid of Galerkin's method. The flexural
vibration mode is assumed in a form of Fourier series and a homogeneous solution of stress
function is expressed in terms of trigonometric and hyperbolic functions.

Numerical results indicate that the in-plane boundary conditions have a great influence
on the natural frequency as well as the panel geometry. Although the present approach has
limitations on a range of panel curvature and on a choice for combination of the in-plane
boundary conditions, it provides a useful tool for estimation of the natural frequency of
curved panels.

Acknowledgement-The author would like to express his appreciation to Associate Professor S. Kobayashi of
the University of Tokyo for his valuable advices.
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APPENDIX

In the text of the paper the rectangular cartesian coordinate system shown in Fig. 1 is
used for a shallow curved panel. For comparison the shell coordinate system shown in Fig. 5
will be employed here in order to obtain the modal equations and the associated in-plane
boundary conditions. The definition of the breadth 2b along y direction and the direction
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of the displacement v are different between both coordinate systems. However, the
differences may be negligible for a shallow curved panel.

The strain displacement relations of the middle-surface of a panel are given in the shell
coordinate system as

( .\

(Ail

Du Dr
+.

ex

Since the conditions

D2Z
= 0, (A2l

are satisfied by equation (3), the equations of equilibrium and compatibility defined in the
shell coordinate system are identical with equations (4) and (5), respectively. Equations (91
are used as an assumed mode offlexural vibration and hence equations (10)are obtained as a
stress function. Consequently the expressions of stress resultants N x , N, and Nxy and the
displacement u are identified with those given by equations (3)-(16). Therefore. if the
expression of the displacement v proves to be identical with equations (17) while a vibration
mode being symmetrical in y direction, the modal equations are the same as equations (191.

Partial integration of equation (17.1) and utilization of equation (A2) yield

fly) ()Z 1 fJ" 1- I
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The integral in equation (17)* is identical with the expression of the displacement 1'defined
in the shell coordinate system. Since the first term of the right-hand side of equation (17)~

vanishes at y = -h or h, equation (17)* becomes equivalent to the displacement v in the
shell coordinate system at y -h and h.

As shown in the above, the modal equations defined in the shell coordinate system have
formally the same expressions as those defined in the rectangular cartesian coordinate
system. Therefore, the frequency defined in the shell coordinate system is identical with that
defined in the rectangular cartesian coordinate system.

In addition, this fact implies that the natural frequency of a thin cylindrical shell calcula­
ted from a basis on the Donnel type approximation is easily evaluated by utilizing the
present analysis for an antisymmetrical vibration mode in y direction with appropriate
modifications. The value of a half of breadth should be nR in place of h. The condition of
continuity at y = nR and nR is satisfied by using the set Sy2.

(Received 27 January 1971; revised 16 March 1971)
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A6cTpaKT-Ha OCHOBe ynpOll.\eHHbIX YPll.\BHeHHH PeHCCHepa ,lJ,nJI TOHKHX, rronOfHX 060n'leK orrpe,lJ,enJleTCli

C06CTBTBeHHali '1aCTOTa ,lJ,nll rraHeneH rrepeKbITHli. YpaBHeHHlI pewalOTCli rrpH6nH3HTenbHO C rrOMOWblO

MeTO,lJ,a ranepKHHa. npHHHMaeTCli BH,IJ, H3fH6HbiX Kone6aHHH B BH,IJ,e pll,lJ,OB <!>ypbe.

JIaeTcli O,lJ,HopO,lJ,Hoe peweHHe <!>YHKI.\HH HarrplilKeHHH B <!>opMe TpHfoHOMeTpH'IeCKHX H fHrrep6onH'IeCKHX

<!>YHKI.\HH, C I.\enblO TO'lHOfO y,lJ,OBneTBopeHHlI HeKOTopOH CHCTeMe fpaHH'IHbIX ycnoBHH B rrnOCKOCTH.

YpaBHeHHlI Kone6aHHH Boo6ll.\e corrplilKeHbI H Cne,lJ,OBaTenbHo KalK,IJ,blH BH,IJ, co6CTBeHHbIX Kone6aHHH

lIBnlleTCli 06ll.\eH KOM6HHaI.\HeH rrpHHlITblX BH,IJ,OB Kone6aHHH. l..{HcneHHble pe3ynbTaTbi B arrnpOKCHMaI.\HH

,lJ,BYX BH,IJ,OB Kone6aHHH YKa3blBalOT Ha TO, 'ITO ycnoBHlI Ha rrpliMbIX KpaliX HMelOT 60nbwoe BnHTHHe, '1eM

ycnoBHlI Ha KpHBblX Kpallx ,lJ,nll rraHenH OpH ,\ 2 1, f,lJ,e ,\ lIBnlleTCli OTHoweHHeM ,lJ,nHHbl rrpliliMoro Kpall

K ,lJ,nHHe KpHBoro. B '1aCTHOCTII, OrpaHH'IeHHe HopManbHblx rrepeMell.\eHIIH Ha rrpocTblX Kpallx rroBblwaeT,

B 60nbwOH CTeneHH co6cTBeHHylO '1acToTy BH,IJ,a Kone6aHHH HH3weH '1aCTOTbl. Ll,nll'\:$ 1 ycnoBHlI Ha

KpHBblX KpaliX O'leHb BnHlITenbHbl. Ha KpHBblX KpaliX ycnoBHe HyneBoro TaHreHI.\HOHanbHoro rrepeMeweHHlI

JlaeT 60nbwe OrpaHH'IeHHH ,lJ,nll rraHenH npli ,\ < 1,83, '1eM ycnoBHe HyneBoro HopManbHOfO rrepeMeweHHlI.

BnHlIHHe rpaHH'IHbiX ycnoBHH B onOCKOCTH YMeHbwaeTli ,lJ,nll BH,IJ,OB Kone6aHHH BblcweH '1aCTOTbl.


