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INFLUENCE OF THE IN-PLANE BOUNDARY CONDITIONS
ON THE NATURAL FREQUENCY OF CYLINDRICALLY
CURVED PANELS WITH SIMPLY SUPPORTED EDGES

Yun Marsuzakit

National Aerospace Laboratory, Tokyo, Japan

Abstract—The natural frequency of roof-shaped panels is evaluated on the basis of Reissner’s simplified equations
for thin shallow shells, which are approximately solved with the aid of Galerkin’s method. The flexural vibration
mode is assumed in a form of Fourier series and a homogeneous solution of stress function is expressed in terms
of trigonometric and hyperbolic functions in order to satisfy several sets of the in-plane boundary conditions
exactly. The modal equations are generally coupled and hence every natural mode is a general combination of the
assumed modes. Numerical results in two-mode approximation indicate that the conditions at straight edges are
more influential than the conditions at curved edges for a panel of A 2 1, where 1 is defined as the ratio of the
length of straight edges to that of curved edges. In particular, the restriction on the normal displacement at straight
edges raises the natural frequency of the lower frequency mode to a great extent. For 4 < 1 the conditions at
curved edges are very influential. At curved edges the condition of zero tangential displacement gives more
restrictions to a panel of 4 < 1.83 rather than that of zero normal displacement. As for the higher frequency mode
the influence of the in-plane boundary conditions is diminished.

NOTATION

a half of length of a panel along straight edges

a half of breadth of projection of a panel on x—y plane (see Fig. 1)
ER/12{1 ~v?)

Young’s modulus

stress function

thickness of panel

N.,N,,N,,  stress resultants

I(m, n) see equation (23)

Jollm, n), etc.  see equations (24)

R radius of curvature

SmmoTe

u, v, w displacements in x, y and z directions, respectively
Wonn modal amplitude

W see equation (21)

X, ¥,z coordinates

Z(x, y) geometry of panel

s Bs Vus 8, S€€ €quations (12)
wk, BE,y¥, 6%  see equations (19)
aspect ratio == a/b

v Poisson’s ratio

Pum density of panel

A 8%/ox? 4 0% /ay?

w natural frequency

Q dimensionless natural frequency, see equation (22)

r,q) a natural mode predominated by p and g half-waves in x and y directions, respectively
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1. INTRODUCTION

THE analysis of flexural vibration of curved panels is essential to aeroelastic and acoustic
problems of high-speed aircrafts and rockets in which curved panels are fundamental
structural components.

For curved panels with simply supported edges early works based on a modal approach
were performed by Vlasov [1], Palmer [2] and Reissner [3]. Palmer gave the frequency
formula of clamped edge panels, too. Reissner derived the simplified equations from the
shallow shell theory of Marguerre [4] by omitting the effect of in-plane inertia on a basis of
an order-of-magnitude analysis. Kobayashi [5] gave the natural frequency of simply
supported edge panels constrained by the condition that zero normal displacement at the
edges was satisfied on an average and showed the occurrence of coupling of the assumed
modes. Sewall [6] presented the frequency equations of curved panels with simply supported
or clamped edges by employing the beam vibration mode and compared theoretical results
with available experimental data. Webster [ 7] calculated the natural frequency for clamped
panels approximating the vibration mode by truncated double-power series and evaluated
a range of panel geometry for which Sewall’s equations gave accurate results. For two-
dimensional curved panels Dowell {8] indicated the coupling behavior of the assumed
modes in a symmetrical form.

It can be concluded from the results of the above-mentioned investigations that
natural frequency of curved panels is greatly affected by both curvature and edge conditions.
As for the analysis of vibration of cylindrical shells, Forsberg [9] solved numerically the
eighth-order characteristic equation and indicated that the in-plane boundary conditions
have a great influence on the natural frequency.

In the present paper the effect of the in-plane boundary conditions on the natural
frequency of curved panels with simply supported edges is investigated as well as the effect
of panel geometry. Forsherg’s method may be applicable to an analysis of curved panels.
However, the present investigation is a preliminary one for panel flutter problem of curved
panels. It is too laborious to apply the method to the flutter problem.

Recently, the buckling analysis of a fundamental mode of curved panels including the
effect of the in-plane boundary conditions on critical loads is presented by Hayashi and
Kondo [10] using a modal approach. They have expressed a homogeneous solution of
stress function in terms of trigonometric and hyperbolic functions to satisfy the in-plane
boundary conditions exactly. Such an approach is taken here by employing Reissner’s
simplified equations for thin shallow shells.

2. ANALYSIS

The strain—displacement relations of the middle-surface of a thin shallow curved pane]
are given as

cu 02w
g = s
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Cr 04 ew
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where Z = Z(x, y) is the geometry of the middle-surface of the panel and Hooke’s law as
exo = (N,—VvN,)/Eh
¢y0 = (N, —VN,)/Eh (2)

Yeyo = 2(1 + V)N /Eh.

Figure 1 shows the panel geometry defined as
bZ _ y2

z (3)

2R

and coordinate system.

FiG. 1. Rectangular cartesian coordinates and shell geometry.

Reissner’s equations of equilibrium and compatibility in the linear theory are given as
folows:

0%F 0*Z  8*F 0*Z 0*F 9*Z *w

DAAw—hSL T2 _p O O Ly O 02 L, O
Woh i o M axE o ey axay P e = O @
0*Z *w 0%*Z 0*w 0%Z ¢*w
AAF=E2e i oo o ———— —
[ O0xdy oxdy 0Oy? 0x? ox? 6y2:l )

where D, E and F are bending stiffness, Young’s modulus and stress function defined as

#F N, @&F N, &F N

= ———— = — xy
ay* h’ 0x? h’  9xdy h ©)
The simply supported edge conditions are taken:
w=20w/dx?=0 atx= —aanda (7.1)

w=0w/dy>? =0 aty= —bandb. (7.2)
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The following sets of the in-plane boundary conditions which are the same at the opposite

sides of edges are considered :
Sl:iu=0v=20

orS2:N,=v=0

orS3:u=N, =0

orS4 N, =N, =0 atx= —aandx =aq,
Sl:v=u=0

orS2:N,=u=20

orS3:v=N,=0

or§S4:N,=N,=0 aty= —bandy=>

(8.1)

In a subsequent section, description of derivation of the modal equations will be divided into
four parts corresponding to the vibration mode.

2.1 Odd numbers of half-waves in x and y directions

The flexural vibration mode is assumed so as to satisfy equations (7.1) and (7.2) as
follows:

= ..2‘1 nil A(f) cos %Tx cos 2: (9.1)
m,n: odd
Substitution of equations (9.1) and (3) into equation (5) yields a solution of stress function as
F=F,+F, (10.1)
where F, and F, are particular and homogeneous solutions, respectively and
F,= —;;EW"’" %)z(mzf;li;icos’;nxcosg , (11.1)

[Zcos x(a cosh—y+ﬁ,,,2 ysmh——y)
nn ,

— 12.1)

+ Zcos 557 (y,, cosh — T nsz sinh 2bx)] (12.1)

Equations (10.1) and (6) yield stress resultants as

m*n?i mn nm

[ZZ o 2,2)2 C0S 5 X COS 57 Y

+3 mr 2co {(0( +28 )cosh y+ﬂ ysmh~—y}
5

nm\ 2 nm
it — 13.1
(2b) cos ¥ 2b (y,,cosh 2bx+<3 be smh b H (13.1)
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m* Jmn nm
[Z PR ™ m? +n 2,12)2 x Cos 55

—Z(%) co ’;Zx(a cosh y+ﬂ,,, ysmh—y)

m

nm nm nm
y (= 7 ¢ sinh — 14.1
+ ] (Zb) 2b {(y,.+25 )cosh b +4, wap* sinh 2bx}:| (14.1)

mn nn

Amin
[Z ) W""'(m + nziz)2 22" sin EB

2
| txy

7::

m

+Z(%§E) r; {(oc +B,,,)s1nh y+ﬁ,,.2 coshz—y}

+; ) {(y,,+5 )smhﬁx+5,,2bxcosh%x}] (15.1)

The displacements u and v are derived from equations (1), (2) and (10.1) as

* 0u * 1
u(x) = 6xd f }—E—}—I(Nx—vNy)dx

2a m(n*A*—vm? . mn nm
N =—X COS =y

[ZZ W (m*+n?1%)? S 2a 2b

+Z sm—x{(oc + v +2[3m)cosh—y+ﬂm(1+v)—ysmh5—y}

Z I cos gb {(y,, + vy, +2v4,) sinh "7

2b 2b
+4,(1 +v)(—x cosh % x _sinh x

b % H (16.1)

Y ov Y1 0Z 0
o) = [ Sy = [ gy, -wig-Z oy

2a In{A%n?+ 2+ Hm?)
[ LU W T g 008 2—" sin 2by
mn nm
+ ;;wm,,ycosj‘;x cos 5y

mn  mn .. mn
-y 5g CO8 57X {(am +va,, +2vB,,) sinh 357

m

mn mn mn
+ Bm 1+v)]— h — y —sinh —
( v)( 2a y cos 2a y=s 2a y)}

+ Z = sm {(y,, + vy, +26,) cosh —bx +6,(1+ v) x sinh ;—:x}] . (17.1)
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Since, for this vibration mode, the displacements are symmetric with respect to the
x = 0and y = 0 sections, the conditions u = 0 and v = 0 are satisfied at x = Oand y = 0.
respectively. By means of equations {13.1)(17.1) each in-plane boundary condition leads

to the equations with respect to the unknown quantities x,,, ff,,. 7, and d, (s == 1.3 5
andn =1,3,5...)as

x = —aanda;

u=0: %, =B, =0 (OOX-1)

7l +v)sinh T 45, {(1 +9)2 i cosh S 2 (1 —v) sinh 2/}

x (Za) 2 p(A2n%—wr?) in FI
= = T 222 Wen Y
r,::dld | An(rf+n°l%) 2 (00X-2)
v=20: a,, and f§, are arbitrary. {O0X-3)

y,,(l+v)cosh%)t+(5,, {(I—H’) 5 /lsmh )L+2 coshwzv/} =0 (00X -4}

N, =0: equation (0O0X-3)
v, cosh ?/ +5 / sinh —~—A =0 {O0X-5)

N, =0: equation (OOX—I)

nn . nm nm . > [2a\? r
inh — inh — A +-—/ — Al = — o) s W()oxe,
y, sinh 5 4+ 8,| sinh 3 A+ 5 /4 cosh 5 /t) > (n) ni? +nzjz)zw,,,,sm ( )
rrodd
y = —bandb;
v=20: v, =0, =0 ({O0Y-1)
A1+ V) smh +[3,,, {(1+v)2—cosh~——(1——v) smhAl(
2a\ 2 As{s?A* + 2+ v)m?} . sm
- — = v sin — (O0Y-2}
s; ( n) mim? +s220)7 o
5:odd

u=70: v, and &, are arbitrary. {O0Y-3)
% (14+v) cosh +B,,, {(1 + v)2 smh— +2 cosh —;} =0 {(O0Y-4)

N, =0: equation (OOY-3)
Ol cosh +,B,,, " si nhz— =0 (O0Y-5)

N, =0: equation (OOY-1)
Ams ST X
[ Sll’lh +ﬂm smh 22 2A”. h—) — Z ( ) m 'ms sin 2’ (O0Y-6)

st odd



Influence of the in-plane boundary conditions 1561

where
A = a/b. (18)

Corresponding to the combination of the sets of the in-plane boundary conditions,
unknown quantities «,s, B8, 7, and 4,s are easily determined from equations (OOX-1)-
(OO X-6) and equations (OOY-1}{OOY-6) in the general form as

= ;a;“wm

= ;ﬂ;"wms

= gvi‘w
0y = 251“%

where o¥s, B¥s, y¥s and §}s are constants.
The following seven combinations of sets of the in-plane boundary conditions can be
derived from equations (OO X-1}{O0OX-6) and equations (OOY-1)-{OOY-6):
S,1:8,2
5,2:8,1,5,2,83,84

5,3:8,2
S.4:8,2.

(19.1)

It is noted that a¥s and B¥s (or y*s and J}s) in equations (19.1) vanish for the case of the
set §,2 (or §,2).

Finally, equations (9.1), (10.1) and (3) are substituted into the left-hand side of equation
(4) and the Galerkin method is used to obtain a coupled set of modal equations:

{I(m,n)— Q1 W, +J o(m,n) = 0 (m=135... n=1335..) (20.1)

where
Wonlt) = W, €Xplicot) 21
7?2 D
Sy
12(1 —v?){2a\* 4

Im,n) = (m?> +n222)? + 2R (;a) o +mn2]12)2 (23)

J 24 —v?) 2a imn

oo(ma n) - abh2R2 2 +n212

mn . nm mn  2m* cosh(mmn/22) _
X [7 sin 7 {Cosh ﬁ Z ot*w,,,s + ( 21 sinh 7*~W) gﬁs wms}

_n_ sin 7{cosh —1 Z y*w

(—is hﬂx 2m? cosh(nm/2). °°Sh(""/2)i)25;*wm}]. (24.1)

m? +n%i?
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A characteristic equation is derived as
A=20 (25)

where A represents a determinant of the coeflicients with respect to the modal amplitudes
in equations {20.1). The dimensionless natural frequency Q is easily obtained from equation
(25). Since the assumed modes are generally coupled in the modal equations, each natural
mode is a general combination of the assumed modes.

2.2 Odd and even numbers of half~waves in x and y directions, respectively
The vibration mode is assumed to be in the form of

z Z Wpn(£) €OS _j_ﬂ', X sin ZZ 92)
m=1 mp=2

m: odd. n:even
The stress function is obtained from equations (9.2) and (5} as

P - TEwa

2

27 %14 mun M ma
+ Y cos —x|a, sinh — y+ B, ——ycosh—
% 2a ( " 2a” B"’za} Zay)

nw )
+ }:smzb (’y,,cosh-—jb»x ,,szsmhzb )] (10.2)

Since the in-plane condition N, = 0 is identically satisfied by means of equation (10.2) at
y = 0, the condition v = 0 is not satisfied at x = —a and a. Hence, the set §,1 or §,3 is
not considered for this vibration mode.

According to the in-plane boundary conditions, the equations with respect 10 «,,, 8.
y.and 8, (m = 1,3,5,...and n = 2,4,6,...) are obtained as
x = —aanda;

u=_0: By = P =0 (OEX-1)

< nm nTw | . nm
1(1+v)sinh %’31-{_ 3 {(1 + v)—l?jzt cosh 2" i—(1—)sinh - ,1,2\

i 2 H 2202 —wr?) .
i I OEX-2
Z {n) In(r? ¥tz ) ¢ )

r.odd
v=0: a,, and j3,, are arbitrary. (OEX-3)
nm
71+ ) cosh f'_z’f,z+5,, {(1 +v)f’§’f;t sinh fszi+z cosh -E—A} —0  (OEX-4)
N, =0: equation (OEX-3)

'yﬂcosh—x 46, isinh 24 =0 (OEX-5)

2 "2 2



Influence of the in-plane boundary conditions 1563

N, =0: equation (OEX-1)
. W, AW nm
P sinh - ,H-é smh-é—/l-i-?&cosh?l
© [2a\2 r? rn
= — _ OEX-6
z ( NIy ( )
r:dd
y= —bandb
u=20: v, and J, are arbitrary. (OEY-3)
(14 ) smh 7 +ﬂ,,, {(l + v)— cosh §+2 sinh ﬂ} =0 (OEY-4)
N, =0: equation (OEY-3)
% smh +ﬂ,, cosh 2/’; 0 (OEY-5)
ny:()f y”=5n_—.() (OEY-1)
© (2a\?  Ams sw
O cosh =% +/£,,,(cosh 57 2,1 h—) ng (—) mwm €08 - (OEY-6)

s:even

The following combinations of sets of the in-plane boundary conditions may be chosen:
S,1:5.2
§2:8,2,54
5.3:8,2
5482
The coupled set of the modal equations is obtained as
{Im, n) —Q*} W+ J pe(myn) = 0 m=13,5... n=2,4,6,..) (20.2)
where

24(1—v?)[2a\*
abh’>R* \ m

Amn
m?+n2)?

mn nn —
X [7 coS — {smh 3 Z 0* Wy

mn mn  2m* sinh(mn/2)
(u osh 37 ‘W)Z”s }

Joe(ma n) ==

nm . mn nn
-
+ > $in —- {cosh 5 A Er YW,

2
+ (”—z’tasmh "—2"/1+-—2"' cosh(rn/ 2”) Y 6% ﬂ (24.2)

m?+n?i?
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The dimensionless natural frequency is obtained from the characteristic equation associated
with equation (20.2).
Descriptions about the remaining vibration modes will be omitted in the present paper

3. NUMERICAL RESULTS AND DISCUSSIONS

In the present analysis the influence of the in-plane boundary conditions at x = ~a
and a (or at y = —b and b) on the natural frequency can be investigated exclusively with
the combination of the set §,2 at the adjoining edges y = —b and b (or the set 5,2 at
x = —g and a). The analysis in the preceding section indicates that each natural mode is
generally a combination of the assumed modes. However, as for the case of the set S,2
the w,, s are uncoupled in equations (20} since the os and the 8¥s in equations (19) vanish.
It is also true that the w,,s are uncoupled in equations (20) for the case of the set §.2.
Therefore, for the case of the combination of the sets §,2 and S,2 the assumed modes are
uncoupled and each assumed mode represents a natural mode. The numerical calculations
are presented for symmetrical vibration modes and carried out by employing two-mode
approximation (m = 1 and 3 for n = 1 or n = 1 and 3 for m = 1) in the right-hand side
of equation (9.1).

Figures 2(a), 3(a) and 4(a) illustrate the influence of the in-plane boundary conditions
at x = —a and a with the combination of the set §,2 at y = —b and b. The dimensionless
natural frequency Q for panels of aspect ratio 4 = 0-5, 1.0 and 2-0 are plotted against the
geometric parameter 4a*/Rh. In the figures the natural frequency of a panel constrained

20

(30 7 /
/ Jnn
$41,5,2 /
0 "'t
po/

$x3,8x4 / / S1,5¢2
/ /

Jon
# /'{
//
Q

0 20 40 60 80 100 120
8a
Rh

F16. 2(a). Natural frequencies for 4 = 0-5 with the set S,2 of the boundary conditionsat y = —b and b.
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FiG. 2(b). Natural frequencies for 2 = 0-5 with the set S,2 of the boundary conditions at x = —aand a.
20
o
15 /
Ve
4
e
10 v
e
S (L0
v
v
e
5
—_—— le
S¢2
Sx3
****** Sx4
O 1 i
[0} 80 100
4d
Rh

FiG. 3(a). Natural frequencies for A = 1.0 with the set §,2 of the boundary conditions at y = —b and b.
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F1G. 3(b). Natural frequencies for 4 = 1.0 with the set S.2 of the boundary conditions at x = —q and a.

(1,1 - Syl

Sx2
e Sx3
— e 544

O 'l L i I L
¢] 20 40 60 80 100 120

4a°
Rh

FIG. 4(a). Natural frequencies for 4 = 2.0 with the set §,2 of the boundary conditions at y = —b and b.
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FiG. 4(b). Natural frequencies for 2 = 2:0 with the set S,2 of the boundary conditions at x = —a and a.

by the sets of S,1, .2, S,3 and S,4 at x = —a and a is presented by chain, solid, faint and
dashed lines, respectively. When two lines can not be drawn separately, the one for the
higher frequency is presented with an indication of both sets. The notation (p, g) indicates
a natural mode predominated by an assumed mode of p and g half-waves in x and y
directions, respectively.

It may be concluded from Figs. 2(a), 3(a) and 4(a) that the in-plane boundary conditions
are quite influential to the natural frequency of the lower frequency mode, namely a (1, 1)
mode. In particular, the condition of zero tangential displacement v gives much restriction
to a panel of aspect ratio 4 < 1 compared with the condition of zero normal displacement
u since the natural frequency for the case of the set S.1 or S,2 is much higher than for the
case of the set S,3 or S,4. Figure 4(a) indicates that for a higher value of aspect ratio the

effect of the boundary conditions at x = —a and a is diminished. The reason is that the
distance between the edges at x = —a and a relatively increases compared with the distance
between the adjoining edges y = — b and b as the aspect ratio increases.

It is noted that for a higher value of aspect ratio the condition of zero normal displace-
ment u is more restrictive rather than that of zero tangential displacement v. The higher
frequency mode, namely a (3, 1)mode, is not so sensitive to the effect of the in-plane boundary
conditions at x = —g and a. The panel curvature has a large effect on the natural frequency
of the lower and higher frequency modes.

Figures 2(b), 3(b) and 4(b) illustrate the influence of the in-plane boundary conditions
at y = —b and b with the combination of the set §,2 at x = —a and a. In the figures the
natural frequency of a panel constrained by the set S,1, 5,2, S3 or S4aty = —band b
is indicated by a chain, a solid, a faint or a dashed line, respectively. Figures 2(b) and 3(b)
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present typical illustrations that, except for the case of §,2, each natural mode is « combina-
tion of w;, and w, 5, with the lower frequency mode being predominately w,, for small
4a*/Rh and wy ; for large 4a?/Rh. Conversely, the higher frequency mode is predominately
w5 for small 4a%/Rh and w,, for large 4a%/Rh.

It may be concluded from Figs. 2(b), 3(b) and 4(b} that the in-plane boundary conditions
at y = —bh and b have a great influence on the natural frequency of the lower frequency
mode. Especially the condition of zero normal displacement v is very restrictive (o a panel
since the natural frequency of a panel restrained by the set S,1 or §,3 is much higher than
by the set 5,2 or S 4. However, the influence decreases as the aspect ratio decreases. The
boundary condition is less influential to the natural frequency of the higher frequency modc.

The summary of the numerical results is as follows: for a panel of aspect ratio + = !
the conditions at the straight edges, v = — b and h, are more influential than the conditions
atthe curved edges, x = —aand a. In particular, the restriction on the normal displacement
v at the straight edges raises the natural frequency of the lower frequency mode to a great
extent. For a panel of aspect ratio 2 < | the conditions at the curved edges are very influen-
tial. At the curved edges the condition of zero tangential displacement v gives more restriv
tions to a panel of aspect ratio 7 < 1.83 rather than that of zero normal displacement .
As for the higher frequency mode the influence of the in-plane boundary condition s
diminished.

Although in the present analysis the influence of the in-plane boundary conditions can
be investigated solely with the combination of the set 5,2 or §,2 at the adjoining edges,
the combination of the different set from S,2 or §,2 might be expected to have a qualitatively
similar influence on the natural frequency. The present approach based on Reissner’s
simplified equations for thin shallow shells has limitations on a range of panel curvature
and on a choice for combination of sets of the in-plane boundary conditions. However, it
provides a useful tool for estimation on the natural frequency of shallow curved panels
including the effect of the in-plane boundary conditions.

In the Appendix is presented the derivation of the modal equations and the associated
in-plane boundary conditions of shallow curved shells defined in the shell coordinate
system shown in Fig. 5. It is also indicated that the natural frequency of thin cylindrical
shells based on the Donnell type approximation is easily evaluated by utilizing the present
analysis with appropriate modifications. Forsberg [11] has presented a range of shell
geometry, for which the Donnell type approximation and omission of the in-plane incrtia
give accurate results.

F1G. 5. Shell coordinates and shell geometry.
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The present approach, in which a homogeneous solution of stress function is expressed
in terms of trigonometric and hyperbolic functions in order to satisfy several combinations
of the in-plane boundary conditions exactly, is also applicable to a nonlinear analysis of
flexural vibration of rectangular plates [12].

The application of the present approach to panel flutter analysis of curved panels will
be presented elsewhere.

4. CONCLUSIONS

The natural frequency of curved panels is evaluated on a basis of Reissner’s simplified
equations, which are approximately solved with the aid of Galerkin’s method. The flexural
vibration mode is assumed in a form of Fourier series and a homogeneous solution of stress
function is expressed in terms of trigonometric and hyperbolic functions.

Numerical results indicate that the in-plane boundary conditions have a great influence
on the natural frequency as well as the panel geometry. Although the present approach has
limitations on a range of panel curvature and on a choice for combination of the in-plane
boundary conditions, it provides a useful tool for estimation of the natural frequency of
curved panels.
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APPENDIX

In the text of the paper the rectangular cartesian coordinate system shown in Fig. 1 is
used for a shallow curved panel. For comparison the shell coordinate system shown in Fig. 5
will be employed here in order to obtain the modal equations and the associated in-plane
boundary conditions. The definition of the breadth 2b along y direction and the direction
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of the displacement v are different between both coordinate systems. However, the
differences may be negligible for a shallow curved panel.

The strain displacement relations of the middle-surface of a panel are given in the sheli
coordinate system as

Ot
Oety =0
ox
cr N w A
£ 0 T e p— { ! %
¥ cy R !
- u &
Fovo = b
i &y éx
Since the conditions
M7 27 { &z o
=y = (0, e R e e . = {A2)
ox- cy” R CXCy ’

are satisfied by equation (3}, the equations of equilibrium and compatibility defined in the
shell coordinate system are identical with equations (4) and (5), respectively. Equations (9}
are used as an assumed mode of flexural vibration and hence equations {10) are obtained as a
stress function. Consequently the expressions of stress resultants N, N, and N, and the
displacement u are identified with those given by equations (13)}-(16). Therefore. if the
expression of the displacement v proves to be identical with equations (17} while a vibration
mode being symmetrical in y direction, the modal equations are the same as equations (19).
Partial integration of equation {17.1) and utilization of equation {A2) yield

oz vl o R
vyl = —w 4 — AN, — N3+ -1 dr (7
cy

[ o4 I_M E}? ! * R .

The integral in equation (17)* is identical with the expression of the displacement v defined
in the shell coordinate system. Since the first term of the right-hand side of equation (17)*
vanishes at y = —b or b, equation (17)* becomes equivalent to the displacement v in the
shell coordinate system at y = —band b.

As shown in the above, the modal equations defined in the shell coordinate system have
formally the same expressions as those defined in the rectangular cartesian coordinate
systern. Therefore, the frequency defined in the shell coordinate system is identical with that
defined in the rectangular cartesian coordinate system.

In addition, this fact implies that the natural frequency of a thin cylindrical shell calcula-
ted from a basis on the Donnel type approximation is easily evaluated by utilizing the
present analysis for an antisymmetrical vibration mode in y direction with appropriate
medifications. The value of a half of breadth should be nR in place of b. The condition of
continuity at y = —nR and nR is satisfied by using the set §,2.

(Received 27 January 1971 ; revised 16 March 1971)
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Ab6cTpakT—Ha ocHOBe YNPOLLEHHBIX ypLUBHEeHUI PeiiccHepa a/ist TOHKUX, MOJIOTUX 060/IueK onpeaensaeTcs
coBCTBTBEHHAsA YaCTOTA AJIA MAHENEH TIEPEKBITUA. Y paBHEHHUs PELIAOTCs NPUONU3UTENBHO C MTOMOIUIBIO
metona Ianepxuna. [IpuHUMaeTcsa B M3rMOHBIX KoneGaHUM B BuIE pAnoB Gypbe.

Jlaércs ogHopoaHoe peluenne GYHKIMH HanpaxeHuh B OpMe TPUTOHOMETPHYECKHX U TUIIEPOOTNYECKHX
dyHKUMi, ¢ UETBI0O TOYHOTO YIOBJIETBOPEHUS HEKOTOPOH CUCTEME TPAaHUYHBIX YCJIOBUH B TJIOCKOCTH.
VpaBHeHUs KosiebaHnWii BOOOLIE COMPSKEHBI M CENOBATEbHO KaXIbid BMO COOCTBEHHBIX Konebanuu
assgercs obiuei xoMOMHaIMe MPUHATBIX BUAOB KoniebaHuil. YuciaeHHbie pe3ynbTaThl B AlMIPOKCHMALIMU
ABYX BHAOB KOreOaHHHM yKa3blBalOT HA TO, YTO YCJIOBHS HA TPSMBIX KpasX UMEIOT OOJIBUIOE BITUTHHE, YEM
YCJIOBMS HA KPHMBBIX KPasiX IUIS MaHE M NMPU A = 1, rae A sSBISETCS OTHOLUEHMEM IJIMHBI MPASIMOTO Kpas
K JUIMHE KPUBOro. B 4acTHOCTH, OTpaHHUYeHHE HOPMAJIBHBIX MEPEMELLIEHHIA HA TIPOCTHIX KPasX TMOBBIILACT,
B OONIbIIOH CTeneHH COOCTBEHHYIO YacTOTy Buaa KoneOaHui HH3wiel 4acToThl. [das A < 1 ycroBus Ha
KPHUBbIX Kpasx 04eHb BIIMATEIbHbI. Ha KpUBBIX Kpanx yCc/IOBHE HYJIEBOTO TAHTEHLIMOHAIBHOIO MEPEMEILEHUs
naéT 60Mbile OrpaHHYEHUit [Nst MaHenu npu A < 1,83, 4eM yYCIIOBHE HYJIEBOrO HOPMAILHOTO TIEPEMEILIEHU .
BiiHsiHMe rpaHUYHBIX YCIOBUM B TJIOCKOCTH YMEHBLUAETH A/ BUAOB KosiebaHuil BbICLIEH YaCTOTHI.



